
Adaptive Isolation Model using Data Clustering for
Multimodal Function Optimization

Shin Ando
Division of Intelligent Systems

Engineering, Faculty of
Engineering, Yokohama

National University
79-5 Tokiwadai, Hodogaya

Yokohama, Kanagawa, Japan

ando@fe.dis.titech.ac.jp

Jun Sakuma
Interdisciplinary School of
Science and Engineering,

Tokyo Institute of Technology
4259 Nagatsutacho, Midori-ku
Yokohama, Kanagawa, Japan

jun@fe.dis.titech.ac.jp

Shigenobu Kobayashi
Interdisciplinary School of
Science and Engineering,

Tokyo Institute of Technology
4259 Nagatsutacho, Midori-ku
Yokohama, Kanagawa, Japan

kobayashi@fe.dis.titech.ac.jp

ABSTRACT
In this paper, we propose a GA model called Adaptive Iso-
lation Model(AIM), for multimodal optimization. It uses a
data clustering algorithm to detect clusters in GA popula-
tion, which identifies the attractors in the fitness landscape.
Then, subpopulations which makes-up the clusters are iso-
lated and optimized independently. Meanwhile, the region
of the isolated subpopulations in the original landscape are
suppressed. The isolation increases comprehensiveness, i.e.,
the probability of finding weaker attractors, and the over-
all efficiency of multimodal search. The advantage of the
AIM is that it does not require distance between the op-
tima as a presumed parameter, as it is estimated from the
variance/covariance matrix of the subpopulation.

Further, AIM’s behavior and efficiency is equivalent to ba-
sic GA in unimodal landscape, in terms of number of eval-
uation. Therefore, it is applied recursively to all subpop-
ulations until they converge to a suboptima. This makes
AIM suitable for locally-multimodal landscapes, which have
closely located attractors that are difficult to distinguish in
the initial run.

The performance of AIM is evaluated in several bench-
mark problems and compared to iterated hill-climbing meth-
ods.

Categories and Subject Descriptors
Computing Methodologies [Artificial Intelligence]: Prob-
lem Solving, Control Methods, and SearchHeuristic Meth-
ods

General Terms
Algorithm
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1. INTRODUCTION
The multimodal optimization algorithm have many prac-

tical needs in real-world problems. In many instances, prepar-
ing multiple solutions, preferably with varying characteris-
tics, is a better general strategy. The objective of multi-
modal optimization is to search multiple optima/suboptima
comprehensively, or to certain extent. In nature, the pro-
cess of evolution has produced great diversity in population
and their functions. In the field of evolutionary computa-
tion, many researchers have attempted to reproduce and uti-
lize such mechanism in the framework of evolutionary algo-
rithms, which were successfully applied to many benchmark
problems.

In this paper, we describe a framework of GA for multi-
modal optimization called Adaptive Isolation Model(AIM),
which use clustering algorithm to identify different region of
attractors, then search each attractors independently.

With proper setting, it is reasonable to assume that GA
population will form a ‘cluster’, which has higher density
near the center and sparse at the marginal region, on the
attracting region of the landscape. Such clusters can be
detected using proper clustering algorithm.

In AIM, the subpopulation in the detected clusters are
isolated and optimized in later process. On the other hand,
the fitness function in original GA is modified to suppress
the region of isolated subpopulation, so that the effect of
the isolated attractor is also removed from remaining popu-
lation.

In multimodal optimization, searching each of the attrac-
tors independently from the rest is beneficial, in terms of
efficiency and comprehensiveness. The efficiency is induced
since the crossovers will only include parents from same at-
tractors, thereby reducing the number of offspring sampled
outside of the attractors. With regard to comprehensive-
ness, the probability of finding suboptima in weaker attrac-
tors increases by isolating strong attractors. This is due to
combination of excluding parents in strong attractors from
crossover, and prohibiting children in strong attractor to re-
place parents in weak attractors.
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Many multimodal optimization algorithms have attempted
to avoid repeatedly finding or converging to same optima by
applying penalty function to a region within a predefined
range of known optima. However, this approach introduces
the range of the penalty function as a critical problem de-
pendent parameter, which made the algorithm impractical
for unknown problems. One of the advantages of AIM is that
it does not require such distance/range parameter, since it
is estimated from the range of the subpopulation.

In AIM, isolation occurs when more than one clusters are
detected within the population. This implementation allows
AIM to behave as an unimodal GA in unimodal landscape.
On the other hand, many multimodal optimization algo-
rithms propose two-phase algorithm, with fast convergence
algorithm ensuing the multimodal search algorithm. This is
due to the inefficiency of the multimodal GA in unimodal
landscape compared to the standard GA.

Meanwhile, many researches have reported the difficulty
in a locally multimodal landscape, where ‘clusters’ or groups
of suboptima are located closely together in a relatively
small region. In such landscape, it is difficult to distin-
guish suboptima within that cluster. [8] proposed to reap-
ply multimodal-optimizer to the subpopulation to distin-
guish such suboptima. Therefore, in practice, users cannot
switch to ‘convergence-mode’ without somehow confirming
local landscape’s unimodality.

With regards to above, another advantage of AIM comes
from its efficiency in unimodal landscape. AIM can be recur-
sively applied to its isolated subpopulation, without analysis
of local landscape’s unimodality/multimodality.

In Sec. 2, we give an overview of GAs for multimodal
optimization. Then in Sec. 3, we describe the implementa-
tion of AIM. In Sec. 4, we evaluates AIM’s performance on
several benchmarks problems. Sec. 5, 6 give discussion and
our conclusion.

2. RELATED WORKS
In multimodal-landscape, there are multiple optima/suboptima

and their attractors, i.e., convex surrounding each. When
GA is applied to such landscape, after certain generations,
its population will be distributed among different attractors.
In Fig.1, GA population is distributed among four attractors
in the fitness landscape.
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Figure 1: A Snapshot of GA Population on Multi-
modal Landscape

The attractors can have different characteristics, which
can largely affect the GA’s behavior[4, 5]. Ikeda et al. [4]
showed a type of deception caused by presence of hetero-

geneous attractors. Such landscape are known to exist in
Job Shop scheduling[4] and Fletcher-Powell’s Function[14].
They identified three properties of strong attractors, which
can attract larger number of population. They were: a) size,
b) better fitness in initial sampling, and c)search efficiency.
Ikeda et al. termed ‘UV-structure’ as a landscape when
suboptima have significantly stronger attractors than that
of the optima and claimed such landscape caused deception.

They proposed Innately Split Model(ISM)[4], where mul-
tiple GA population are initialized on small subdivisions of
the landscape. The division helped to remove the effect of
strong attractors from others and ‘localize’ the search pro-
cess.

An implication from [4] is that strong attractors are detri-
mental to search in the rest of landscape. Assuming random
selection of the parents, strong attractors have better pos-
sibility of having parents in the crossover since they have
larger number of individuals, therefore slowing search speed
in other attractors. Further, with slower search speed, the
individual in weaker attractors are more likely to be replaced
by offspring in stronger attractors.

To that end, it is beneficial to ’localize‘ a) selection and b)
reproduction procedures, to prevent a strong attractor from
taking away individuals from other attractors. In addition,
localizing the reproduction, i.e., crossing-over parents from
same attractors will reduce the number of offspring gener-
ated outside the attractors, which will improve efficiency of
the search. [14] referred to a) as survival selection and b) as
reproductive selection.

We can also classify conventional approaches to multi-
modal optimization into two categories, with regards to type
of localization is used. First group of methods, including
Crowding[2] and its variations Deterministic[9] and Proba-
bilistic Crowding[10], and Species Conserving GA[8], mod-
ifies the selection procedure. These method try to apply
selection to the parent-child pair that are neighbors or same
‘species’ in terms of Euclidean distance, so that parents are
replaced by individuals from same attractors, thereby local-
ize the selection process.

The second group of methods use multi-populational im-
plementation, e.g. Multi-National GA[15], ISM[4], CBN[13].
These approaches, intend to assign one population to an
attractor. In effect, parents from same attractor will be
crossed-over, thus localizing the reproductive selection. In
addition, ANS[14], which uses nearest-neighbor approach to
select the parents of genetic operator, can also be catego-
rized in the latter group.

AIM also belongs to the latter, since it isolates subpopula-
tion on each attractors. However, unlike ISM which divides
the landscape at the predefined threshold, AIM will detect
the attractors heuristically using GA and clustering algo-
rithm.

3. ADAPTIVE ISOLATION MODEL
In unimodal landscape, GA population can converge to a

single optima after iteration of proper genetic operators and
selection. The population forms a cluster over the attrac-
tor of the optima, densely populated near the center and
sparsely at the margin. In multimodal landscape, popula-
tions are distributed among several attractors and forming
multiple clusters on each attractors. In both cases, we can
assume that the clusters represent the local convex around
the optima. The main procedure of AIM is to detect such
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clusters and isolate them into independent subpopulations.
The detection of clusters is done by repeatedly apply-

ing clustering algorithm to GA population. The isolation
consist of a) recording the subpopulation that compose the
cluster and removing them from original population, and
b) modifying the fitness function to suppress the region of
the attractors. The isolated subpopulation is optimized in-
dependently. The range of suppression is calculated from
variance/covariance of the cluster.

CBN[13] also uses density-based clustering algorithm to
split and merge multiple population, but does not isolate
subpopulation.

Following are the detailed description of the AIM proce-
dure.

1. Apply GA step, i.e., crossover operator(UNDX) and
selection(MGG), k times.

2. Run clustering algorithm on GA population.

3. If the clustering algorithm detects nc(> 2) compo-
nents, isolate subpopulations which belong to compo-
nents C1, ...Cnc−1. Further, supplement individual to
maintain the size of original population.

4. Adjust the fitness function to suppress the region of the
isolated components Ci. The clusters are identified as
Gaussian components as described in Section 3.1, and
the region within 2σ of its mean are suppressed. In-
dividuals within that region will have the fitness value
of fworst, which is the value of the worst individual in
the run.

5. Repeat the steps 1 through 4, until the termination
criteria is met. The AIM is terminated after: a) fit-
ness value reaches target value, b) performing certain
number of evaluation, or c) when certain proportion of
the population are trapped in suppressed region.

6. After termination, if isolated subpopulations exist, AIM
is applied to each. In other word, AIM is applied re-
cursively to subpopulations, until the subpopulation is
distributed over only one attractor.

Fig.3 and Fig.4 shows the pseudo code and the flow chart
of the AIM’s algorithm.

In the the unimodal landscape, clustering algorithm de-
tect only one cluster as AIM population converge to a single
optima. Therefore AIM behaves as UNDX+MGG in uni-
modal landscape. We will show in Section 4 that AIM has
convergence speed equivalent to UNDX+MGG in unimodal
landscape, thus computational cost of applying AIM to sub-
population is not infeasible.

Fig.2 shows the snapshots of population when AIM is ap-
plied to the Rastrigin function. In each snapshot, members
of population detected as clusters are represented by ’∆‘,
while others are represented by ‘+’. The region of Gaus-
sian components, denoted by circles, are suppressed in the
original fitness landscape. In this example, the periodically
placed optima induce clustering algorithm to cluster indi-
viduals on several attractor together.

3.1 Clustering Algorithm
There are several requirement for clustering algorithms

used in AIM.
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Figure 3: Flow chart of AIM
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Figure 2: Detection and Isolation in AIM
The example of AIM’s behavior in two-dimensional, rotated, and scaled Rastrigin function is shown. In the left figure(a), two
components c0 and c1 are found and c0 is isolated. The individuals indicated by ∆ belong to c0, and + indicate the rest of
the population. The circle indicate the 2σ threshold line. The fitness value of the region within the circle will be suppressed.
Following several GA steps (b), another component c2 is found and c1 is isolated. After more iteration (c), components c0−c6,
indicated by circles, are isolated.

1. Does not require number of clusters as parameters.

2. Able to identify clusters from noisy data (noise from
data).

3. Computationally stable.

4. Scale-invariant (preferably).

Scale-invariance ensures that the result of the clustering
will not affected by linear transformation of the data/domain,
which is an important feature for algorithm applied to real-
world problems. In many instance of real-world problems,
variables may have different units of measurement and dif-
ferent in the order of thousands. This is referred to as an
ill-scaled domain[5]. Additionally, strong correlation among
variables also induce ill-scale property into attractors. Ill-
scaled domain can be problematic for real-coded GA[5] and
optimization algorithms in general.

We used a clustering algorithm called Localized MAP-
EM(LMAP-EM)[6], which is an EM algorithm based on
MAP learning. While LMAP-EM is model-free, we used
Gaussian distribution to model components for mathemati-
cal convenience.

The data is modeled as a mixture of normal distributions
as follow.

Pj (~x |~µj ) =
1

m
exp

„
− (~x− ~µj)

T (~x− ~µj)

2σ2

«
(1)

P (~x |~µ ) =

mX
j=1

Pj (~x |~µj ) (2)

m is the number of components and Θj = (~µj , σ) represents
the parameters of each component.

Assuming the latent variables as

Z = {zij |i = 1, . . . , N, j = 1, . . . , m} (3)

where N is the data size. zij = 1 if data ~xi is generated by
jth component Pj(~x |Θj ) and zij = 0 otherwise.

In LMAP-EM, hard-assignment is assumed, i.e., each dat-
apoint is assigned to only one component. More formally,

the following equality for p (zij |xi ), the probability that
data xi was generated by jth component is assumed.

p (zij |xi ) = {0, 1} ,

mX
j=1

p (zij |xi ) = 1 (4)

Under this assumption, the log likelihood of the model
is expressed as the sum of likelihood of each component as
follows.

L (Θ) =
mX

j=1

8
<
:log Pj

“
Θj

˛̨
˛pa

“
Θj

” ”
+

NX

i=1
zij log Pj

“
~xj

˛̨
˛Θj

”
9
=
; (5)

where pa (Θj) is the prior distribution of the parameter.
The E-step of LMAP-EM, new latent variables Z′, which

increase the localized likelihood (6) is generated.

NX
i=1

z′ij log Pj (X, Z |Θj ) ≥
NX

i=1

zij log Pj (X, Z |Θj ) (6)

In the M-step, the component parameter is updated with
equation (7). This is a simplified version of the M-step,
localized likelihood is increased by steepest decent method
in [6].

~µ =

NX
i=1

zij~x

,
NX

i=1

zij (7)

After the localized likelihood has converged, we remove
the subset and apply the same procedure on the remaining
data. This is repeated until all data are removed.

Since each component is estimated locally and sequen-
tially, the number of components is not required in the al-
gorithm. Furthermore, use of Gaussian component with full
parameters ensures that the result of clustering is consis-
tent with the linear transformation of the domain. This is
computationally stable as it does not require inversion of
the matrix, therefore meeting 1,3,4 of the requirement men-
tioned.

3.2 Customizing LMAP-EM
Following are the implementation of the LMAP-EM that

is customized for use with AIM.
With LMAP-EM, we obtain a mixture model of one uni-

form distribution and Gaussian distributions by labeling
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each data cluster as a Gaussian distribution or part of uni-
form distribution. We determine type of distribution for
each cluster by comparing Akaike’s Information Criteria(AIC)
of two presumed mixture models. AIC is a statistical in-
dex for selecting probabilistic model with better prediction
power, calculated as follows

AIC = −2×
"

log likelihood of the

estimated model

#
+ 2×

"
# estimated

parameters

#

We prepare one model which include the data as a new
Gaussian component, and another model which include data
in a uniform distribution. We will select a mixture model
with smaller AIC.

The initial component size Lz is a required parameter in
this algorithm. This parameter is statistically determined
from the number of data needed to sufficiently distinguish
Uniform distribution from Normal distribution.

3.3 UNDX and MGG
In this section, we describe the genetic operators and re-

placement scheme used in AIM. Unimodal Normal Distri-
bution Crossover (UNDX)[11, 3] produce offspring by a nor-
mally distributed probability function defined by the par-
ents. A variety of real-coded crossover operators were de-
rived from UNDX and have been successfully applied to
many benchmark problems [11, 7, 3].

UNDX produces offspring based on following Gaussian
distribution (8).

y = g +

µ−1X
i=1

wid
(i) +

nX
i=µ

viDe(i) (8)

where,

g =
1

µ− 1

µ−1X
i=1

x(i)

is the center of the mass, and

d(i) = x(i) − g : i = 1− µ

e(i) = d(i)
.˛̨
˛d(i)

˛̨
˛

D =

˛̨
˛̨
˛x

(µ) − g −
µ−1X
i=1

κe(i)

˛̨
˛̨
˛

The normally distributed variables

wi = N
`
0, σ2

ζ

´
, vi = N

`
0, σ2

η

´

whose parameters σζ and ση are suggested in [11] as

ση = 0.35
.p

n− µ− 2, σζ = 1
.p

µ− 2

The Minimal Generation Gap (MGG) [12] is a replace-
ment scheme used to maintain diversity in GA population.
In MGG, large number of offspring is generated from one
operation of crossover. Then two individuals, one by elitist
and one roulette-wheel, are selected out of all offspring and
parents and returned to the population. Following is the
procedure for one cycle of MGG.

1. From Population P , select m parents at random.

2. Generate λ offspring by iterating the crossover of the
same parents.

3. selects one elitist and one roulette-selected individual
parents and offspring and return to the population.

4. EXPERIMENT
In this section, the performance of proposed method is

tested on unimodal and multimodal benchmarks and artifi-
cial deceptive function.

4.1 Standard Benchmark Functions
First, we studied the proposed methods behavior in three

standard benchmark functions. Sphere Function F1(9), Rosen-
brock’s Function F2(10), which has a nonlinear dependency,
and Rastrigin’s Function F3(11). F3 has a big-valley struc-
ture and 4n local optima within the given range.

F1 (~x) =

nX
i=1

x2
i [−5.12 ≤ xi ≤ 5.12] (9)

F2 (~x) =

nX
i=2

n
100

`
x1 − x2

i

´2
+ (xi − 1)2

o
[−10 ≤ xi ≤ 10]

(10)

F3 (~x) = 10n +

nX
i=1

xi sin
p
|xi| [−1.5 ≤ xi ≤ 2.5] (11)

Following parameters were used in the experiment. Di-
mension D = 5, population size M = 400, # of parents:
m = 6, offspring size: λ = 20, number of iteration: 20. For
AIM, the minimum component size: LZ = 35, and AIM in-
terval k = LZ . Each run was terminated when best fitness
value reached 1.0−10.

Result
For F1 and F2, AIM detected one component throughout
all of the runs, therefore its behavior and efficiency were
equivalent to that of basic UNDX+MGG in terms of eval-
uation. The convergence curve of AIM and UNDX+MGG
are shown in Figures 5 and 6. The vertical and the horizon-
tal axis denote the best obtained fitness and the number of
evaluation.

In optimization of unimodal functions F1 and F2, the AIM
population quickly converge to compose a very large cluster,
consisting of more than half of the population. Figure 7
shows the size of the largest cluster detected in the primary
population while optimizing F1, F2, and F3. In multimodal
landscape F3, the primary (unisolated) population quickly
forms a large cluster after all but one attractor has been
isolated.

To this end, we suggest to use the size of cluster to signal
AIM to switch from multimodal search to unimodal search,
for the sake of improving convergence speed. This is a prac-
tical modification, since it is difficult to perform multimodal
search at the presence of very large cluster.

In F3, AIM found 1024 suboptima after applying AIM to
2123 subpopulations and evaluating Ne = 8.69 × 1012 indi-
viduals in average . When use (UNDX+MGG) with small
population (M = 100) in unimodal search. The unimodal
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Figure 5: Optimization of Sphere Function by
UNDX+MGG and AIM. Best Fitness vs. # of Eval-
uation.
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AIM IHC(σ=0.01) IHC(σ=0.05) IHC(σ=0.1)
1002 1022 212.2 24.2

Table 1: # of Suboptima found with AIM and IHC
within 8.69× 1012 evaluations.

search is terminated when the best individual is within 1/108

of suboptimal value.
We compared the result of Rastrigin function with iter-

ated hill-climbing(IHC). IHC is a primitive method but can
be more effective than GA in some problems. An HC pro-
cess is started from random point. After one HC process
converge, next HC is started from random initial point if the
total number of evaluations is less than Ne. Here we simu-
late HC with (1+1)+ES with a fixed mutation rate σmut.

The comparison of average number of suboptima found
in 5 runs by IHC and AIM is shown in Table 1. It shows
that step size is the critical parameter to the performance
of hill-climbing.

4.2 Locally multimodal function
The Shubert’s function 12 is often used as a benchmark

for multimodal optimization[8].

F4 (x) =

nY
i=0

5X
j=1

j cos ((j + 1) xi + j) (12)

We applied AIM to two-dimensional Shubert Function. It
has over 1000 symmetrically distributed suboptima within
the range (−10 ≤ xi ≤ 10). There are 3n pairs of optima,
each pair within a close proximity of 4n suboptima. The
contour of F4 is drawn with dark line in Fig.4.2.

We applied AIM parameters equivalent to the previous
experiment. The AIM was terminated when 75% of the
population are trapped in suppressed region, or one cluster
include 75% of the population. in the latter case, M = 40
best individuals of the largest clusters were used as initial
population of UNDX+MGG.

Following describes a typical behavior of AIM applied to
F4. In a typical primary run of AIM, 30 clusters were de-
tected before 75% of the population. shown in Figure 4.2.

The secondary runs, i.e. application of AIM to isolated
subpopulation, can detect clusters with higher resolution.
This is due to the increase in overall density of the GA
population. Clusters detected in a typical secondary run of
AIM is shown in Figure 4.2

In the typical run AIM found 1231 suboptima after 3.39×
1011 evaluation. The subpopulations of unimodal search, are
shown in Figure 4.2. In five runs, AIM found 1220 subop-
tima in 5.58× 1012 evaluations on average.

5. DISCUSSION
The behavior of IHC shows the critical effect of distance

parameter in multimodal optimization. Conventionally, Se-
quential Niching[1] also used penalty function to suppress
regions around the known optima. However, it used a pre-
defined the radii for penalty function, which was a problem
dependent parameter. Since no study, to our knowledge,
has proposed general method for estimating such parame-
ters, the primary advantage of the proposed method comes
from excluding such parameter from the algorithm. In this
case, we use variance/covariance of subpopulation to esti-
mate the range of attractors. In doing so, we are exploiting
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the GA’s property as a populational search, by extracting
information of the fitness landscape from the subpopulation.

Further, since many conventional works proposed to use
fast converging algorithm after multimodal search, the tim-
ing of switch to unimodal optimization were another crucial
parameter. AIM exclude this parameter as well, since it has
same convergence speed as basic GA in unimodal landscape,
and can be applied recursively to subpopulations. However,
the efficiency can be improved by using largest cluster size
to signal AIM to switch to unimodal search mode.

Another advantage of AIM is its reduced space complex-
ity. While conventional multimodal optimization algorithms
use large population size for highly multimodal landscape
[8], this algorithm use relatively small population on the
memory to find large number of optima. This contributes
to improved convergence speed. This advantage comes from
isolating multiple optima as a cluster, and recursively ap-
plying multimodal optimization algorithm.

The parameters used in AIM are standard GA parame-
ters, except for the population size. While the analysis of
AIM’s behavior with different population size remain as our
future work, we suggest an empirically determined value of
10×Lz. The suggested values for minimal components size
Lz are shown in Table 2

D ≤ 5 D ≤ 8 D ≤ 1
Lz 35 40 50

Table 2: Suggested values for D ≤ 10 Dimensional
Domain

6. CONCLUSION
We proposed a framework for combining clustering algo-

rithm with GA for multimodal optimization. The method
is aimed to isolate the attractors in the landscape to bene-
fit multimodal search in terms of efficiency and robustness
against deception.

AIM is capable of comprehensive multimodal search by
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isolating and suppressing strong attractors. It can also search
unimodal landscape at the equivalent evaluation cost as the
basic GA.

The main contribution of AIM are a) elimination of dis-
tance parameter, b) recursive application, and c) reduced
time complexity for multimodal search.

We also note that AIM is scale-invariant, i.e., the result is
equivalent to the linear transformation of the domain. This
is an important property for real-world problems, where the
variable have different dimension and significantly different
scale.

In our future work, we plan to apply this method to prob-
lems with deception and higher dimensionality. We are also
implementing the clustering algorithm to run online to re-
duce the computational cost of clustering procedure.
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